

HIT-MM PLUS INJECTION MORTAR

Product Technical Datasheet Update: Oct 24

Steel-to-concrete	Page no. :02
Steel-to-masonry	Page no. :10

HIT-MM PLUS INJECTION MORTAR

Product Technical Datasheet Steel-to-concrete Update: Oct 24

anis, ary ar frequencial statemeters 2012-2013-2014-2014

HIT-MM Plus injection mortar

Anchor design (EN 1992-4) / Rods ,Sleeves and Rebar / Concrete

Injection mortar system

Hilti HIT-MM Plus
300 ml foil pack

Benefits

- Rapid curing

handling

spacing

Chemical injection fasteningTwo component hybrid mortar

- Versatile and conventional

- Always correct mixing ratio

- Clean and simple in use

- Suitable for overhead fastenings

- Small edge distance and anchor

(also available as 500 ml foil pack)

Anchor rods: HAS-U HAS-U HDG HAS-U A4 HAS-U HCR (M8-M16)

Internally threaded sleeves: HIS-N (R) (M8-M12)

Rebar (\u00f68 - \u00f616)

Application condition

Base material

Concrete (uncracked)

Installation conditions

Hammer drilling

Load conditions

Static/ quasi-static

Other information

Hilti Technical Data

Linked Approvals/Certificates and Instructions for use

Approvals / Certificates

Approval no.	Application / loading condition	Authority / Laboratory	Date of issue
ETA-17/0199	Static and quasi-static	DIBt, Berlin	30-08-2019

The instructions for use can be viewed using the link in the instructions for use table or the QR code/link in the Hilti webpage table

Instructions for use(IFU)

Material									
Injection mortar/Fastener		IFU Hilti HIT-MM PLU	<u>S</u>						
Dispenser	IFU HDM	IFU HDE 500-22	IFU HDE 500-A12						

Link to Hilti Webpage

Injection mortars / Dispenser / Threaded rod								
HIT MM PLUS	HDE 500-22	HDE 500-A12	<u>HDM 500</u>	HAS-U	<u>HIS-N</u>			

Fastener special dimensions

Mechanical properties and dimensions HAS-U

Mechanical properties and dimensions of the threaded rods are standardized and can be taken from the ETA listed in the table Approvals / Certificates.

Dimensions HIS-N (R)

Anchor size		M8	M10	M12	
Diameter of element	d	[mm]	12,5	16,5	20,5
Length of element	L	[mm]	90	110	125
Thread engagement length; min - max	hs	[mm]	8-20	10-25	12-30

Mechanical properties

Material quality									
Part	Material								
Rebar	Bars and de-coiled rods class B or C according to NDP or NCL of EN 1992-1-1								

Static and quasi-static loading based on ETA-17/0199, Hilti technical data and design according to EN 1992-4

All data in this section applies to

- Correct setting (see setting instruction)
- For a single anchor
- Hammer drilled holes
- No edge distance and spacing influence (see setting detail tables with characteristic distances)
- Minimum base material thickness, as specified in the table of this section
- Embedment depth, as specified in the table of this section
- Anchor material, as specified in the tables of this section
- Concrete C 20/25
- In-service temperate range I (min. base material temperature -40°C, max. long term/short term base material temperature: +24°C/40°C)

Embedment depth and base material thickness

Anchor size HAS-U (A4)				M8			M10			M12			M16	
Embedment depth	h _{ef}	[mm]	60	80	96	60	100	120	70	120	144	80	160	192
Base material thickness	h	[mm]	100	110	126	100	130	150	100	150	174	116	196	228

Embedment depth and base material thickness

Rebar B500 B size			8	10	12	13	14	16
Embedment depth	h _{ef}	[mm]	80	90	110	120	125	145
Base material thickness	h	[mm]	110	120	142	156	161	185

Recommended loads

Uncracke	d Concrete			ETA-17/0199											
Anchor size				M8			M10			M12			M16		
Tension	HAS-U 5.8	N _{rec}	[kN]	5,4	7,2	8,6	6,7	11,2	13,5	9,4	16,1	19,4	14,4	28,7	34,5
Tension	HAS-U A4	INrec	[kN]	5,4	7,2	8,6	6,7	11,2	13,5	9,4	16,1	19,4	14,4	28,7	34,5
Shear	HAS-U 5.8	V	V _{rec} [kN] [kN]		5,2			8,3			12,0			22,4	
Sileal	HAS-U A4	V rec			5,9		9,3		13,5				25,2		

Recommended loads

Uncracked Concrete			Hilti technical data						
Rebar B500 B size			8	10	12	13	14	16	
Tension	Nrec	[kN]	9,6	13,5	19,7	23,3	26,2	34,7	
Shear	Vrec	[kN]	6,7	10,5	14,8	17,4	20,0	26,2	

Setting information

Installation temperature range:

- 5°C to + 40 °C

In service temperature range

Hilti HIT-HIT-MM PLUS injection mortar with anchor rod may be applied in the temperature ranges given below. An elevated base material temperature may lead to a reduction of the design bond resistance.

Temperature range	Base material temperature	Maximum long term base material temperature	Maximum short term base material temperature
Temperature range I	- 40 °C to + 40 °C	+ 24 °C	+ 40 °C
Temperature range II	- 40 °C to + 80 °C	+ 50 °C	+ 80 °C

Maximum short term base material temperature

Short term elevated base material temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

Maximum long term base material temperature

Long term elevated base material temperatures are roughly constant over significant periods of time.

Working time and curing time ^{a)}

Temperature of the base material	Maximum working time	Minimum curing time
Т	t _{work}	t _{cure} ^{a)}
-5 °C < T ≤ 0 °C	10 min	12 h
0 °C < T ≤ 5 °C	10 min	5 h
5 °C < T ≤ 10 °C	8 min	2,5 h
10 °C < T ≤ 20 °C	5 min	1,5 h
20 °C < T ≤ 30 °C	3 min	45 min
30 °C < T ≤ 40 °C	2 min	30 min

a) The curing time data are valid for dry base material only. In wet base material, the curing time must be doubled.

Setting details for HAS-U

Anchor size			M8	M10	M12	M16		
Nominal diameter of element	d	[mm]	8	10	12	16		
Nominal diameter of drill bit	do	[mm]	10	12	14	18		
Maximum diameter of clearance hole in the fixture	d _f	[mm]	9	12	14	18		
Effective anchorage depth	$h_{ef,min} = h_0$	[mm]	60	60	70	80		
(= drill hole depth) ^{a)}	$h_{ef,max} = h_0$	[mm]	96	120	144	192		
Minimum base material thickness	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm h _{ef}					
Maximum torque moment b)	T _{max}	[Nm]	10	20	40	80		
Minimum spacing	Smin	[mm]	40	50	60	80		
Minimum edge distance	Cmin	[mm]	40	50	60	80		
Characteristic distances								
Spacing for splitting failure	S _{cr,sp}	[mm]		2 c	or,sp			
			1,0 · h _{ef}	for h/h _{ef} ≥ 2,0	0 h/h _{ef}			
Edge distance for splitting failure ^{c)}	C _{cr,sp}	c _{cr,sp} [mm]	4,6 · h _{ef} - 1,8 · h 1	or 2,0 > h/h _{ef} >	-,-			
			2,26 · h _{ef}	for h/h _{ef} ≤ 1,3	3	1,0 ·h _{ef} 2,26 ·h _{ef} c _{cr,sp}		
Spacing for concrete cone failure ^{d)}	Scr,N	[mm]	2 c _{cr,N}					
Edge distance for concrete cone failure ^{d)}	Ccr,N	[mm]	1,5 h _{ef}					

For spacing (edge distance) smaller than characteristic spacing (characteristic edge distance) the design loads must be reduced.

a) $h_{ef,min} \le h_{ef} \le h_{ef,max}$ (h_{ef} : embedment depth) b) Maximum torque moment to avoid splitting failure during instalation with minimum spacing and edge distance

 c) h: base material thickness (h ≥ h_{min})
 d) The characteristic edge distance for concrete cone failure depends on the embedment depth h_{ef} and the design bond resistance. The simplified formula given in this table is on the safe side.

Setting details for rebar

Rebar B500 B size			φ 8	φ 10	φ ·	12	φ 13	φ 14	ф 16
Diameter	φ	[mm]	8	10	1	2	13	14	16
Effective embedment depth and drill hole depth	$h_{ef} = h_0$	[mm]	80	90	11	10	120	125	145
Nominal diameter of drill bit	d_0	[mm]	10 / 12 ¹⁾	12 / 14 ¹⁾	14 ¹⁾	16 ¹⁾	18	18	20
Minimum thickness of concrete member	h _{min}	[mm]	h _{ef} + 30 ≥ 100 mm				he	_f + 2·d₀	
Minimum spacing	S _{min}	[mm]	40 50		6	0	70	70	80
Minimum edge distance	Cmin	[mm]	40	45	4	5	50	50	50

¹⁾ Either of the two given values can be used.

Setting details for HIS-N

Anchor size			M8	M10	M12
Nominal diameter of drill bit	d_0	[mm]	14	18	22
Maximum diameter of clearance hole in the fixture	d _f	[mm]	9	12	14
Effective anchorage depth	h₀	[mm]	90	110	125
Minimum base material thickness	h _{min}	[mm]	120	140	170
Thread engagement length; min – max	hs	[mm]	8-20	10-25	12-30
Maximum torque moment	T _{max}	[Nm]	10	20	40
Minimum spacing	S _{min}	[mm]	60	75	90
Minimum edge distance	Cmin	[mm]	40	45	55

Drilling and Installation equipment

For detailed setting information on installation see instructions for use given with the product.

Rotary Hammers (Corded and Cordless)		TE 2 - TE 70
Dispenser		HDE HDM
Other tools		Blow out pump, Compressed air gun, Set of cleaning brushes
		Hammer drill bit TE-CX, TE-YX, TE-C, TE-Y
	1245	Piston plug

HIT-MM PLUS INJECTION MORTAR

Product Technical Datasheet Steel-to-masonry Update: Oct 24

HIT-MM Plus injection mortar

Anchor design (EOTA TR 054) / Rods and Sleeves / Masonry

Injection mortar system

Hilti HIT-MM Plus

300 ml foil pack

(also available as 500 ml foil pack)

Anchor rods: HAS-U HAS HAS-U A4 HAS A4 HAS-U HDG HAS-U HCR (M8-M12)

Anchor rods: HIT-IC (M8-M12)

Sieve sleeves: HIT-SC (16-22)

Benefits

- Chemical injection fastening for all type of base materials: Hollow and solid clay bricks, sand-lime bricks, normal and light weight concrete blocks, aereated light weight concrete, natural stones
- Two component hybrid mortar
- Rapid curing
- Flexible setting depth and fastening thickness
- Versatile and conventional handling
- Clean and simple in use
- Small edge distance and anchor spacing
- Always correct mixing ratio

Load conditions

Static/ quasi-static Other information

Base material

Solid brick

Installation conditions

Hammer / rotary drilling

Linked Approvals/Certificates and Instructions for use

Approvals / Certificates

Approval no.	Application / loading condition	Authority / Laboratory	Date of issue
ETA-16/0239	Static and quasi-static	DIBt, Berlin	19-10-2023

The instructions for use can be viewed using the link in the instructions for use table or the QR code/link in the Hilti webpage table

Instructions for use(IFU)

Material						
Injection mortar /Fastener	IFU Hilti HIT-MM PLUS					
Dispenser	IFU HDM	IFU HDE 500-22	IFU HDE 500-A12			

Link to Hilti Webpage

Injection mortars /	Dispenser			
HIT MM PLUS	HDE 500-22	HDE 500-A12	<u>HDM 500</u>	
日然: 2013年 日本代				
Threaded rod / slee	eve			
HAS-U	HAS	HIT-IC	HIT-SC	

Mechanical properties

Mechanical properties HAS-U /HAS/ HIT-IC

Mechanical properties of the threaded rods /sleeves are standardized and can be taken from the ETA listed in the table Approvals / Certificates.

Brick types and properties

Instruction to this technical data

- Identify/choose your brick (or brick type) and its geometrical/physical properties on the following tables.
 Information about edge and spacing criteria is available on the following pages.
- The pages reffered on the last column of the table below contain the design resistance loads for pull-out failure of the anchor, brick breakout failure and local brick failure for each respective brick. Notice that the data displayed on these tables is only valid for single anchors with distance to edge such that loading capacity is not influenced by it for other cases not covered, refer ETA-16/0239 or contact Hilti Engineering Team.
- The resistance loads provided by this technical data manual are valid only for exact same masonry unit (hollow bricks) or for units made of the same base material with equal or higher size and compressive strength (solid bricks). For other cases, on-site tests must be performed

Generic bricks

Interior dimensions

Brick types and properties

Brick code	Data	Brick name	Image	Size [mm]	t _o [mm]	t _i [mm]	a [mm]	f _b [N/mm²]	ρ [kg/dm³]
				Solid	clay				
SC3	ETA	Solid clay brick Mz, 2DF		l: ≥ 240 b: ≥ 115 h: ≥ 113		-	-	12	2,0
			S	olid Calciu	ım Silicat	te			
SCS1	ETA	Solid silica brick KS, 2DF		l: ≥ 240 b: ≥ 115 h: ≥ 113		-	-	12 28	2,0
				Hollow	/ clay				
HC1	ETA	Hollow clay brick Hlz, 10DF		l: 300 b: 240 h: 238	t₀₁: 12 t₀₂: 15	t l1: 11 tl₂: 15	a ₁: 10 a ₂: 25	12 20	1,4
	Hollow Calcium Silicate								
HCS1	ETA	Hollow silica brick KSL, 8DF		l: 248 b: 240 h: 238	t ₀₁ : 34 t ₀₂ : 22	t l1: 11 t l₂: 20	a ₁: 52 a₂: 52	12 20	1,4

Anchor installation parameters

Brick position:

- **Header (H):** The longest dimension of the brick represents the width of the wall
- **Stretcher (S):** The longest dimension of the brick represents the length of the wall

Allowed anchor positions:

Spacing and edge distance:

- c Distance to the edge
 - s | Spacing parallel to the bed joint
 - s^{\perp} Spacing perpendicular to the bed joint

 This Product Technical Datasheet includes the load data for single anchors in masonry with a distance to edge equal to or greater than c^{*}.

 c* is the distance from the anchor to the edge of the wall, such that the loading capacity of the anchor is not influenced by the edge.

- Minimum spacing between anchors = MAX (3 x h_{ef}; size of brick in respective direction). This applies for a (conservative) manual design/calculation of a baseplate using the load tables in this datasheet.
- For an optimized design or cases not covered in this technical data, including anchor groups, please refer ETA-16/0239.

Static and quasi-static loading based on ETA-16/0239 and design according to EOTA TR 054 method A

All data in this section applies to:

- Correct setting (see setting instruction)
- For a single anchor
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and masonry work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to supports, etc.).
- Edge distance $c \ge c^*$. For other applications, please refer ETA-16/0239.
- Installation direction -horizontal (Masonry)
- Hammer mode drilled holes in solid bricks and rotary mode drilled holes in hollow bricks
- Use category: dry or wet structure
 d/d Installation and use in structures subject to dry, internal conditions
 w/d Installation in wet substrate and use in structures subject to dry, internal conditions
 w/w Installation and use in structures subject to wet environmental conditions
- Temperature in the base material at installation solid brick : +5° C to +40° C
- Temperature in the base material at installation hollow bricks : 0° C to +40° C
- Use category:In-service temperature
 - Ta: -40 °C to +40 °C, (max.long/short term base material temperature: +24 °C/40 °C)
 - Tb: -40 °C to +80 °C, (max. long/short term base material temperature: +50 °C/80 °C)

Design tension resistances – Pull-out failure of the anchor, brick breakout failure and local brick failure at edge distance ($c \ge c^*$) for single anchor applications

					w/w ai	nd w/d	d/d	
Load type	Anchor size	hor size h	h ef [mm]	f ₅ [N/mm²]	Та	Tb	Та	Tb
				[]		Load	s [kN]	
	SC3 – Solid clay brick Mz, 1DF (ETA data)							
	HAS-U /HAS	M8, M10, M12	80	12	1,0	0,8	1,0	0,8
	HIT-IC	M8	80	12	1,0	0,8	1,0	0,8
N_{Rd,p} = N_{Rd,b} (c ≥ 115 mm)		M10, M12	80	12	1,4	1,2	1,4	1,2
	HAS-U/HAS + HIT-SC	M8, M10, M12	80	12	1,4	1,2	1,4	1,2
	HIT-IC + HIT-SC	M8, M10, M12	80	12	1,4	1,2	1,4	1,2
	SCS1 - Solid silica bric KS, 2DF (ETA data)	k						
	HAS-U/HAS,HIT-IC	M8, M10, M12	80	12	1,8	1,6	2,0	1,6
$N_{Rd,p} = N_{Rd,b}$	1143-0/1143,111-10		80	28	2,8	2,4	2,8	2,4
(c ≥ 115 mm)	HAS-U/HAS +HIT-SC	M8, M10, M12	80	12	1,4	1,0	1,8	1,6
	HIT-IC + HIT-SC		00	28	2,0	1,8	2,6	2,4
	HC1 - Hollow clay brick Hlz, 10DF (ETA data)							
N _{Rd,p} = N _{Rd,b}	HAS-U/HAS + HIT-SC,	M8, M10, M12	80	12	1,0	0,8	1,0	0,8
(c ≥ 150 mm)	HIT-IC + HIT-SC		00	20	1,2	1,0	1,2	1,0
	HCS1 - Hollow silica br KSL, 8DF (ETA data)	ick						
N _{Rd,p} = N _{Rd,b}	HAS-U/HAS + HIT-SC,	M8, M10, M12	80	12	1,0	0,8	1,0	0,8
(c ≥ 125 mm)	HIT-IC + HIT-SC		00	20	1,4	1,2	1,4	1,2

Due to the wide variety of bricks ,on-site tests have to be performed for determination of load values for all applications outside of the above mentioned base materials and / or setting conditions.

On-site tests

For other bricks in solid or hollow masonry, not covered by the Hilti HIT-MM Plus ETA or this technical data manual, the characteristic resistance may be determined by on-site tension tests (pull-out tests or proof-load tests), according to EOTA TR 053.

For the evaluation of test results, the characteristic resistance may be obtained taking into account the β factor, which considers the different influences of the product.

The β factor for the brick types covered by the Hilti HIT-MM Plus ETA is provided on the following table. The β factor is multiplied by the characteristic measured tension load when the characteristic tensile resistance N_{Rk} is assessed via on-site testing, The characteristic shear resistance V_{Rk} can also be directly derived from N_{Rk}. For detailed procedure refer EOTA TR053.

Use categories	w/w a	and w/d ¹⁾	d/d ¹⁾			
Temperature range		Ta ¹⁾	Tb ¹⁾	Ta ¹⁾	Tb ¹⁾	
Base material	Anchor	β _{ETA} facto	or job site test	ing under tens	sion loading	
	HAS-U/HAS or HIT-IC					
Solid clay brick EN 771-2	HAS-U /HAS + HIT-SC	0,94	0,94 0,8	0,81	0,94	0,81
EN // 1-2	HIT-IC + HIT-SC					
Solid calcium silicate brick	HAS-U /HAS or HIT-IC	0,93	0,82	0,94	0,82	
EN 771-2	HAS-U/HAS + HIT-SC	0,66	0.60	0.88	0.80	
	HIT-IC + HIT-SC	0,00	0,00	0,00	0,00	
Hollow clay brick	HAS-U/HAS + HIT-SC	0.04	0.91	0.04	0.91	
EN 771-1	HIT-IC + HIT-SC	0,94	0,81	0,94	0,81	
Hollow calcium silicate brick	HAS-U/HAS + HIT-SC	0,66	0.60		0,80	
EN 771-2	HIT-IC + HIT-SC	0,00	0,00	0,99	0,80	

¹⁾Ta / Tb, w/w and d/d anchorage parameters, as defined on previous pages

Setting information

Installation temperature range:

Solid masonry: 5°C to +40°C Hollow masonry: 0°C to +40°C

In service temperature range

Hilti HIT-HY MM+ injection mortar with anchor rods may be applied in the temperature ranges given below. An elevated base material temperature leads to a reduction of the design bond resistance.

Temperature range	Base material temperature	Maximum long term base material temperature	Maximum short term base material temperature
Temperature range I	-40 °C to + 40 °C	+ 24 °C	+ 40 °C
Temerature range II	-40 °C to + 80 °C	+ 50 °C	+ 80 °C

Maximum short term base material temperature

Short term elevated base material temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

Maximum long term base material temperature

Long term elevated base material temperatures are roughly constant over significant periods of time.

Working time and curing time ^{b)}

Temperature of the base material	Maximum working time	Minimum curing time
Т	t _{work}	t _{cure} ^{b)}
0 °C < T ≤ 5 °C ª)	10 min ^{a)}	6 h ^{a)}
5 °C < T ≤ 10 °C	8 min	3 h
10 °C < T ≤ 20 °C	5 min	2 h
20°C < T ≤ 30 °C	3 min	60 min
30 °C < T ≤ 40 °C	2 min	45 min

a) For hollow bricks only;

b) The curing time data are valid for dry base material only. In wet base material the curing times must be doubled

Setting details for solid bricks with HAS-U/HAS

				HAS-U/HAS			
Anchor size	M8	M10	M12				
Sieve sleeve		HIT-SC	-	-	-		
Nominal diameter of drill bit	d_0	[mm]	10	12	14		
Effective anchorage and drill hole depth	$h_{ef} = h_0$	[mm]	80	80	80		
Minimum wall thickness	h _{min}	[mm]	115	115	115		
Maximum diameter of clearance hole in the fixture	df	[mm]	9	12	14		
Maximum torque moment	T _{max}	[Nm]	5	8	10		
Edge distance	Cmin=Ccr	[mm]	115				
Spacing	Smin II = Scr II	[mm]	240				
Spacing	$S_{min} \perp = S_{cr} \perp$	[mm]	115				

Setting details for solid bricks with HIT-IC

			HIT-IC			
Anchor size	M8	M10	M12			
Sieve sleeve		HIT-SC	-	-	-	
Nominal diameter of drill bit	d_0	[mm]	14	16	18	
Effective anchorage and drill hole depth	$h_{ef} = h_0$	[mm]	80	80	80	
Minimum wall thickness	h _{min}	[mm]	115	115	115	
Maximum diameter of clearance hole in the fixture	d _f	[mm]	9	12	14	
Length of bolt engagement	hs	[mm]	875	1075	1275	
Maximum torque moment	T _{max}	[Nm]	5	8	10	
Edge distance	C _{min} =C _{cr}	[mm]		115		
Specing	Smin II = Scr II	[mm]	240			
Spacing	$S_{min} \perp = S_{cr}$	⊥ [mm]	115			

Setting details for hollow bricks for HAS-U/HAS

				HAS-U/HAS + HIT-SC			
Anchor size					M10	M12	
Sieve sleeve			HIT-SC	16x85	16x85	18x85	
Nominal diameter of drill I	bit	d_0	[mm]	16	16	18	
Effective anchorage deptl	า	h _{ef}	[mm]	80	80	80	
Drill hole depth		ho	[mm]	95	95	95	
Minimum wall thickness		h _{min}	[mm]	240	240	240	
Maximum diameter of clearance hole in the fixture		df	[mm]	9	12	14	
Torque moment		T _{max}	[Nm]	3	4	6	
Edge distance		Cmin=Ccr	[mm]	150			
Specing	HC1 - Hollow clay brick HIz, 10DF	Smin II = Scr II	[mm]	300			
Spacing		$S_{min} \perp = S_{cr} \perp$	[mm]	240			
Edge distance		Cmin=Ccr	[mm]	125			
Spacing	HCS1 - Hollow silicate brick KSL, 8DF	Smin II = Scr II	[mm]	248			
		$S_{min} \perp = S_{cr} \perp$	[mm]	240			

Setting details for hollow bricks for HIT-IC

			HIT-IC + HIT-SC			
Anchor size					M10	M12
Sieve sleeve			HIT-SC	16x85	18x85	22x85
Nominal diameter of drill	bit	do	[mm]	16	18	22
Effective anchorage and	drill hole depth	h _{ef}	[mm]	80	80	80
Drill hole depth		ho	[mm]	95	95	95
Minimum wall thickness		h _{min}	[mm]	240	240	240
Maximum diameter of cle	Maximum diameter of clearance hole in the fixture		[mm]	9	12	14
Length of bolt engagement		hs	[mm]	875	1075	1275
Torque moment		T _{max}	[Nm]	3	4	6
Edge distance		Cmin=Ccr	[mm]	150		
Creating	HC1 - Hollow clay brick Hlz, 10DF	Smin II = Scr II	[mm]	300		
Spacing HIz, 10DF		$S_{min} \perp = S_{cr} \perp$	[mm]	240		
Edge distance		Cmin=Ccr	[mm]	125		
Spacing	HCS1 - Hollow silica brick KSL, 8DF	Smin II = Scr II	[mm]	248		
		$S_{min} \perp = S_{cr} \perp$	[mm]	240		

Drilling and Installation equipment

For detailed setting information on installation see instructions for use given with the product.

Rotary Hammers (Corded and Cordless)	TE 2 - TE 30
Dispenser	HDE HDM
	Hammer drill bit TE-CX, TE-C
Other tools	Blow out pump, Compressed air gun, Set of cleaning brushes