

HIT-HY 170 INJECTION MORTAR

Technical Datasheet Update: Jan-23

HIT-HY 170 injection mortar

Anchor design (EOTA TR 054) / Rods and Sleeves / Masonry

Injection mo	ortar system					Benefi	ts		
				Hilti HIT-HY 17 500 ml foil pac (also available 330 ml foil pac	k as	 Chemical injection fastening for the most common types of base materials: Hollow and solid clay bricks, calcium silicate bricks, normal and light weight concrete block Two-component hybrid mortar 			
				Anchor rod: HAS-U HAS-U HDG HAS-U A4 HAS-U HCR (M8-M12) Internally threaded sleev HIT-IC	/e:	hand	atile and conve ling with HDE o ar filing control ves	dispenser	
	haardaan ahaardaa dhaadhaa dhaa	6		(M8-M12) HIT-SC sieve sleeve					
				(16-22)					
Base materi	ial		Load conditi	ions					
Solid brick	Hollow brick		Static/ quasi-static						
Installation	conditions		Other inform	nation					
	128 ×			CE	12	4 16	HCR highMo	Å	
Hammer drilled holes	Small edge embedment depth	Variable embedment depth	European Technical Assessment	CE conformity		osion tance	High corrosion resistance	PROFIS Engineering design Software	

Approvals / certificates

Description	Authority / Laboratory	No. / date of issue
European technical Approval ^{a)}	DIBt, Berlin, Germany	ETA-15/0197 / 2015-12-09
European technical Approval ^{a)}	DIBt, Berlin, Germany	ETA-19/0161 / 2019-08-28

c) All data given in this section according to ETA-15/0197, issue 2015-12-09 and ETA-19/0161, issue 2019-08-28

Brick types and properties

Instruction to this technical data

- Identify/choose your brick (or brick type) and its geometrical/physical properties on the following tables.Information about edge and spacing criteria for every brick is available on page 4.
- The pages reffered on the last column of the table below contain the design resistance loads for pull-out failure of the anchor, brick breakout failure and local brick failure for each respective brick. Notice that the data displayed on these tables is only valid for single anchors with distance to edge equal to or greater than c_{cr} for other cases not covered, use PROFIS Engineering software, consult ETA-15/0197 or contact Hilti Engineering Team.
- The resistance loads provided by this technical data manual are valid only for exact same masonry unit (hollow bricks) or for units made of the same base material with equal or higher size and compressive strength (solid bricks). For other cases, on-site tests must be performed-please consult page 8.

Generic bricks

Brick types and properties

Brick code	Data	Brick name	Image	Size [mm]	to [mm]	tı [mm]	a [mm]	fb [N/mm2]	ρ [kg/dm3]	Page
Solid Clay	/									
SC	ETA	Solid clay brick Mz, 2DF		l: ≥ 240 b: ≥ 115 h: ≥ 113	-	-	-	12	2,0	17
Hollow Cl	ay		• •	•					•	
HC	ETA	Hollow clay brick Hlz, 10DF		l: 300 b: 240 h: 238	t o1:12 t o2:15	tı₁:11 tı₂:15	a 1: 10 a 2: 25	12/20	1,4	17
Solid Cale	cium Si	licate	•	•	•				•	
SCS	ETA	Solid silica brick KS, 2DF		l: ≥ 240 b: ≥ 115 h: ≥ 113	-	-	-	12/28	2,0	17
Hollow Ca	alcium \$	Silicate								
HCS	ETA	Hollow silica brick KSL, 8DF	-110	l: 248 b: 240 h: 238	t o1:34 t o2:21	tı₁:12 tı₂:30	a ₁: 50 a ₂: 50	12/20	1,4	17
Hollow lig	htweig	ht concrete						-		
HLWC	ETA	Hollow lightweight concrete brick	11	l: 495 b: 240 h: 238	t o1:45 t o2:51	tı₁:35 tı₂:36	a 1:196 a 2: 52	2/6	0,8	18
Hollow no	ormal w	eight concrete	1	1	P	r		-	1	
HNWC	ETA	Hollow normal weight concrete brick	tie -	l: 500 b: 200 h: 200	t o1:30 t o2:15	tııı:15 tı₂:15	a ₁:133 a ₂: 75	4/10	1,0	18

Anchor installation parameters

Brick position:

- Header (H): The longest dimension of the brick represents the width of the wall
- Stretcher (S): The longest dimension of the brick represents the length of the wall

Spacing and edge distance:

- c Distance to the edge
- s \parallel Spacing parallel to the horizontal joint
- s₁- Spacing perpendicular to the horizontal joint

Minimum and characteristic spacing and edge distance parameters

 c_{min} – Minimum edge distance 	 s_{min ∥} - Min. spacing distance parallel to the bed joint 	 s_{min}⊥ - Min. spacing distance perpendicular to the bed joint
 c_{cr} – Characteristic edge distance 	 s_{cr} ∥ - Characteristic spacing distance parallel to the bed joint 	 s_{cr}⊥ - Characteristic spacing distance perpendicular to the bed joint

Allowed anchor positions:

• This FTM includes the load data for single anchors in masonry with a distance to edge equal to or greater than the characteristic edge distance.

Edge and spacing distances per brick

Brick code	c _{min} = c _{cr} [mm]	s _{minll} = s _{crll} [mm]	s _{min} ⊥ = s _{cr} ⊥ [mm]
SC	115	240	115
HC	150	300	240
SCS	115	240	115
HCS	125	248	240
HLC	250	240	240
HNC	200	200	200

Static and quasi-static loading (for a single anchor)

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and masonry work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position
 of the anchor is indicated on the design drawings (e.g. position of the anchor relative to supports, etc.).
- Anchorages under static or quasi-static loading are designed in accordance with: EOTA TR 054

Basic loading data (for a single anchor)

The load tables provide the design resistance load for a single loaded anchor.

All data in this section applies to:

- Edge distance $c \ge c_{cr} = c_{min}$.
- Correct anchor setting (see instruction for use, setting details)

Anchorages	subject to:	Hil	ti HIT-HY 170 with	HIT-V, HAS-U or HIT-IC			
Masonry		in solid	bricks	in hollow bricks			
Hole drilling	(22220)	hammei	r mode	rotary mode			
Use category structure	/: dry or wet	conditions. Category w/d - Insta to dry , internal cond	Illation in dry or we	structures subject to dry internal et substrate and use in structures subject structures subject to dry or wet			
		environmental conditions.					
Installation d	lirection	horizontal					
Use category	/	b (solid m	nasonry)	c (hollow or perforated masonry)			
Temperature material at in		+5° C to +40° C		-5° C to +40° C (HIT-V, HIT-IC) 0° C to +40° C (HAS-U)			
Temperature In-service range Ta:		-40 (. 10 +40 (mperature +24°C and mperature +40 °C)			
temperature Temperature range Tb:		-40 °C to +80°C	(e	emperature +50°C and emperature +80 °C)			

Tension loading

The design tensile resistance is the lower value of

N_{Rd,s}

- Steel resistance:
- Pull-out of the anchor: $N_{Rd,p}$
- Brick breakout failure: NRd,b
- Pull out of one brick NRd,pb

Shear loading

The design shear resistance is the lower value of

- Steel resistance: $V_{Rd,s}$
- Local brick failure: $V_{Rd,b}$
- Pushing out of one brick: $V_{Rd,pb}$

Design tension and shear resistances – Steel failure for HIT-V and HAS-U

Anchor size				M8	M10	M12
	HIT-V 5.8(F) HAS-U 5.8 (HDG)			12,2	19,3	28,1
_ .	HIT-V 8.8(F) HAS-U 8.8 (HDG)	_	11.N 13	19,5	30,9	44,9
Tension	HIT-V-R HAS-U A4	– N _{Rd,s}	[kN]	13,7	21,7	31,6
	HIT-V-HCR HAS-U HCR	_		19,5	30,9	44,9
	HIT-V 5.8(F) HAS-U 5.8 (HDG)			7,4	11,6	16,9
	HIT-V 8.8(F) HAS-U 8.8 (HDG)	- V _{Rd,s}	[kN]	11,7	18,6	27,0
Shear	HIT-V-R HAS-U A4			8,2	13,0	18,9
	HIT-V-HCR HAS-U HCR	_		11,7	18,6	27,0
	HIT-V 5.8(F) HAS-U 5.8 (HDG)			15,2	29,6	52,8
Bending	HIT-V 8.8(F) HAS-U 8.8 (HDG)	-		24,0	48,0	84,0
resistance	HIT-V-R HAS-U A4	- M ⁰ Rd,s	[Nm]	16,7	33,4	59,1
	HIT-V-HCR HAS-U HCR	_		24,0	48,0	84,0

Design tension and shear resistances - Steel failure for internally threaded sleeves HIT-IC

Anchor size				M8	M10	M12
Tension	HIT-IC	N _{Rd,s}	[kN]	3,9	4,8	9,1
Chase	HIT-IC		[kN]	7,4	11,6	16,9
Shear	Screw 8.8	V _{Rd,s}		11,7	18,6	27,0
Bending	HIT-IC	N40	[N.I.v.a]	15,0	29,9	52,4
resistance	Screw 8.8	─── M ⁰ _{Rd,s}	[Nm]	24,0	47,8	83,8

Design tension and shear resistances – Pull-out failure of the anchor, brick breakout failure and local brick failure at characteristic edge distance ($c \ge c_{cr} = c_{min}$) for single anchor applications

					w/w ai	nd w/d	d/	′d
Load type	Anchor size		h _{ef} [mm]	f₅ [N/mm²]	Та	Tb	Та	Tb
			[]			Loads	s [kN]	
	SC - Solid clay brid Mz, 2DF	;k						
	HIT-V, HAS-U	M8, M10, M12			1,2	1,0	1,2	1,0
	HIT-IC	M8]		1,2	1,0	1,2	1,0
$N_{Rd,p} = N_{Rd,b}$	HIT-IC	M10, M12	80	12	1,6	1,4	1,6	1,4
(c _{cr} = c _{min} = 115mm)	HIT-V + HIT-SC HAS-U + HIT-SC	M8, M10, M12 M8, M10, M12			1,6	1,4	1,6	1,4
	HIT-IC + HIT-SC	M8, M10, M12			1,6 1,4 1,6 1,4			
V Rd,b (c _{cr} = c _{min} = 115mm)	HIT-V, HAS-U HIT-V + HIT-SC HAS-U + HIT-SC HIT-IC HIT-IC + HIT-SC	M8, M10, M12 M8, M10, M12 M8, M10, M12 M8, M10, M12 M8, M10, M12	80	12		1,	4	
	HC - Hollow clay b Hlz, 10DF	rick						
N _{Rd,p} = N _{Rd,b} (c _{cr} = c _{min} = 150 mm)	HIT-V + HIT-SC HAS-U + HIT-SC	M8, M10, M12 M8, M10, M12	80	12	1,2	1,0	1,2	1,0
	HIT-IC + HIT-SC	M8, M10, M12		20	1,4	1,2	1,4	1,2
V _{Rd,b} (c _{cr} = c _{min} = 150 mm)	HIT-V + HIT-SC HAS-U + HIT-SC	M8, M10, M12 M8, M10, M12	80	12		0,	8	
	HIT-IC + HIT-SC	M8, M10, M12		20		1,	2	
	SCS - Solid silica k KS, 2DF	orick						
	HIT-V, HAS-U	M8, M10, M12		12	2,2	2,0	2,4	2,0
$N_{Rd,p} = N_{Rd,b}$	HIT-IC	M8, M10, M12		28	3,4	3,0	3,4	3,0
$(c_{cr} = c_{min} = 115 \text{ mm})$	HIT-V + HIT-SC HAS-U + HIT-SC	M8, M10, M12 M8, M10, M12	80	12	1,6	1,4	2,2	2,0
	HIT-IC + HIT-SC	M8, M10, M12		28	2,4	2,2	3,2	3,0
V Rd,b (c _{cr} = c _{min} = 115 mm)	HIT-V, HAS-U HAS-U + HIT-SC HIT-V + HIT-SC	M8, M10, M12 M8, M10, M12 M8, M10, M12	80	12		1,	6	
(-01 -11111	HIT-IC HIT-IC + HIT-SC	M8, M10, M12 M8, M10, M12		28		2,	4	
	HCS - Hollow silica KSL, 8DF	a brick						
$N_{Rd,p} = N_{Rd,b}$	HIT-V + HIT-SC HAS-U + HIT-SC	M8, M10, M12 M8, M10, M12	80	12	1,2	1,0	1,4	1,2
$(c_{cr} = c_{min} = 125 \text{ mm})$	HIT-IC + HIT-SC	M8, M10, M12		20	1,6	1,4	2,0	1,8
V _{Rd,b} (c _{cr} = c _{min} = 125 mm)	HIT-V + HIT-SC HAS-U + HIT-SC	M8, M10, M12 M8, M10, M12	80	12		3,	4	
$(\mathbf{c}_{cr} - \mathbf{c}_{min} - 125 \text{ mm})$		M8, M10, M12		20		4,	8	

				£	w/w a	nd w/d	d	/d
Load type	Anchor size		h _{ef} [mm]	f _b [N/mm²]	Та	Tb	Та	Tb
			[]			Loads	s [kN]	
	HLWC – Hollow lig HBL, 16DF	htweight concrete brid	ck					
$N_{Rd,p} = N_{Rd,b}$	HIT-V + HIT-SC	M8, M10, M12		2	0,5	0,4	0,6	0,5
(c = c = 250 mm)	HAS-U + HIT-SC HIT-IC + HIT-SC	M8, M10, M12 M8, M10, M12	80	6	0,8	0,6	1,0	0,8
V _{Rd.b}	HIT-V + HIT-SC	M8, M10, M12		2	1,0			
$(c_{cr} = c_{min} = 250 \text{ mm})$	HAS-U + HIT-SC HIT-IC + HIT-SC	M8, M10, M12 M8, M10, M12	80	6	1,6			
	HNWC – Hollow no Parpaing creux	rmal weight concrete	brick					
$N_{Rd,p} = N_{Rd,b}$	HIT-V + HIT-SC	M8, M10, M12		4		0	4	
$(c_{cr} = c_{min} = 200 \text{ mm})$	HAS-U + HIT-SC HIT-IC + HIT-SC	M8, M10, M12 M8, M10, M12	80	10	0	0,5 0		6
V _{Rd.b}	HIT-V + HIT-SC	M8, M10, M12		4		1,	,0	
$(c_{cr} = c_{min} = 200 \text{ mm})$	HAS-U + HIT-SC HIT-IC + HIT-SC	M8, M10, M12 M8, M10, M12	80	10	1,6			

Design tension and shear resistances - Pull out and pushing out of one brick failures

Pull out of one brick (tension):

 $N_{Rd,pb} = 2 \cdot I \cdot b \cdot (0.5 \cdot f_{vko} + 0.4 \cdot \sigma_d) / (2.5 \cdot 1000) [kN]$

 $\begin{array}{l} N_{Rd,pb}{}^{*} = (2 \cdot I \cdot b \cdot (0,5 \cdot f_{vko} + 0,4 \cdot \sigma_{d}) + b \cdot h \cdot f_{vko}) \, / \, (2,5 \cdot 1000) \quad [kN] \\ {}^{*} \, \text{this equation is applicable if the vertical joints are filled} \end{array}$

Pushing out of one brick (shear):

 $V_{Rd,pb} = 2 \cdot I \cdot b \cdot (0.5 \cdot f_{vko} + 0.4 \cdot \sigma_d) / (2.5 \cdot 1000) [kN]$

 σ_d = design compressive stress perpendicular to the shear (N/mm²) f_{vko} = initial shear strength according to EN 1996-1-1, Table 3.4

Brick type	Mortar strength	f _{vko} [N/mm²]	
Clay brick	M2,5 to M9	0,20	
Oldy Briok	M10 to M20	0,30	
All other types	M2,5 to M9	0,15	
	M10 to M20	0,20	

On-site test

For other bricks in solid or hollow masonry, not covered by the Hilti HIT-HY 170 ETA or this technical data manual, the characteristic resistance may be determined by on-site tension tests (pull-out tests or proof-load tests), according to EOTA TR 053.

For the evaluation of test results, the characteristic resistance shall be obtained taking into account the β factor, which considers the different influences of the product.

The β factor for the brick types covered by the Hilti HIT-HY 170 ETA is provided in the following table:

Use categories		w/w a	nd w/d	d/d	
Temperature range		Ta*	Tb*	Ta*	Tb*
Base material	Elements				
	HIT-V, HAS-U or HIT-IC				
Solid clay brick	HIT-V + HIT-SC HAS-U + HIT-SC	0,97	0,83	0,97	0,83
	HIT-IC + HIT-SC				
	HIT-V, HAS-U or HIT-IC	0,96	0,84	0,97	0,84
Solid calcium silicate brick	HIT-V + HIT-SC HAS-U + HIT-SC	0,69	0,62	0,91	0,82
	HIT-IC + HIT-SC				
Hollow clay brick	HIT-V + HIT-SC HAS-U + HIT-SC	0,97	0,83	0,97	0,83
	HIT-IC + HIT-SC				
Hollow calcium silicate brick	HIT-V + HIT-SC HAS-U + HIT-SC	0,69	0,62	0,91	0,82
blick	HIT-IC + HIT-SC				
Hollow lightweight concrete brick	HIT-V + HIT-SC HAS-U + HIT-SC	0,89	0,81	0,97	0,86
	HIT-IC + HIT-SC				
Hollow normal weight concrete brick	HIT-V + HIT-SC HAS-U + HIT-SC	0,97	0,80	0,97	0,80
	HIT-IC + HIT-SC				

*Ta / Tb, w/w and d/d anchorage parameters, as defined on Tables pages 8-9

Applying the β factor from the table above, the characteristic tension resistance N_{Rk} can be obtained. Characteristic shear resistance V_{Rk} can also be directly derived from N_{Rk}. For detailed procedure consult EOTA TR 053.

Materials

Material quality

Part	Material
Zinc coated steel	
Threaded rod, HIT-V 5.8 (F) HAS-U 5.8 (HDG)	Strength class 5.8; Elongation at fracture A5 > 8% ductile Electroplated zinc coated $\ge 5\mu$ m; (HDG), (F) hot dip galvanized $\ge 45 \mu$ m
Threaded rod, HIT-V 8.8 (F) HAS-U 8.8 (HDG)	Strength class 8.8; Elongation at fracture A5 > 12% ductile Electroplated zinc coated \ge 5µm; (HDG), (F) hot dip galvanized \ge 45 µm
Washer	Electroplated zinc coated \geq 5 μ m, hot dip galvanized \geq 45 μ m
Nut	Strength class of nut adapted to strength class of threaded rod. Electroplated zinc coated $\ge 5\mu$ m, hot dip galvanized $\ge 45\mu$ m
Internally threaded sleeve HIT-IC	A5 > 8% ductile Electroplated zinc coated \ge 5 μ m
Stainless Steel	
Threaded rod, HIT-V-R HAS-U A4	Strength class 70 for M8-M12 Elongation at fracture A5 > 8% ductile Stainless steel 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362
Washer	Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014
Nut	Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014
High corrosion resistant s	steel
Threaded rod, HIT-V-HCR HAS-U HCR	Strength class 80 for M8-M12 Elongation at fracture A5 > 8% ductile High corrosion resistance steel 1.4529; 1.4565;
Washer	High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014
Nut	High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014
Sieve sleeve	
Sieve sleeve HIT-SC	Frame: Polyfort FPP 20T Sieve: PA6.6 N500/200

Base materials:

- Solid brick masonry. The characteristic resistances are also valid for larger brick sizes and larger compressive strengths of the masonry unit.
- Hollow brick masonry
- Mortar strength class of the masonry: M2,5 at minimum according to EN 998-2: 2010.
- For other bricks in solid masonry and in hollow or perforated masonry, the characteristic resistance of the anchor may be determined by on-site tests according to EOTA TR 053 under consideration of the β-factor according to Table page 9.

Setting information

Installation temperature range

For solid masonry:

-5°C to +40°C (HIT-V, HIT-IC) 0°C to +40°C (HAS-U)

For hollow masonry:

+5°C to +40°C (HIT-V, HAS-U, HIT-IC with HIT-SC)

In service temperature range

Hilti HIT-HY 170 injection mortar may be applied in the temperature ranges given below. An elevated base material temperature may lead to a reduction of the design bond resistance.

Temperature range	Base material temperature	Maximum long term base material temperature	Maximum short term base material temperature	
Temperature range I	-40 °C to + 40 °C	+ 24 °C	+ 40 °C	
Temperature range II	-40 °C to + 80 °C	+ 50 °C	+ 80 °C	

Maximum short term base material temperature

Short term elevated base material temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

Maximum long term base material temperature

Long term elevated base material temperatures are roughly constant over significant periods of time.

Working time and curing time ^{a)}

Temperature of the base material	Maximum working time	Minimum curing time
Твм	t _{work}	t _{cure} ^{a)}
-5 °C \leq T _{BM} \leq 0 °C ^{a)}	10 min	12 h
$0 \text{ °C} \le T_{BM} \le 5 \text{ °C}^{(a)}$	10 min	5 h
$5 \text{ °C} \leq T_{BM} \leq 10 \text{ °C}$	8 min	2,5 h
$10^{\circ}C \le T_{BM} \le 20^{\circ}C$	5 min	1,5 h
20 °C ≤ T _{BM} ≤ 30 °C	3 min	45 min
30 °C ≤ T _{BM} ≤ 40 °C	2 min	30 min

The curing time data are valid for dry base material only. In wet base material the curing times must be doubled.

a) Data valid for hollow bricks only

Insallation Paramenters

Single sieve sleeve, 50mm > h_{ef} > 80mm

Installation parameters of HIT-V, HAS-U with sieve sleeve HIT-SC in hollow and solid brick

Threaded rods and HIT-V, HAS-U		mmBm	M8	M10	M12
with HIT-SC			16>	16x85	
Nominal diameter of drill bit	d ₀	[mm]	16	16	18
Drill hole depth	h ₀	[mm]	95	95	95
Effective embedment depth	h _{ef}	[mm]	80	80	80
Maximum diameter of clearance hole in the fixture	d _f	[mm]	9	12	14
Minimum wall thickness	h _{min}	[mm]	115	115	115
Brush HIT-RB			16	16	18
Number of strokes HDM			6	6	8
Number of strokes HDE 500-A			5	5	6
Maximum torque moment for all brick types except "parpaing creux"	T _{max}	[Nm]	3	4	6
Maximum torque moment for "parpaing creux"	T _{max}	[Nm]	2	2	3

Installation parameters of HIT-IC with HIT-SC in hollow and solid brick

HIT-IC			M8	M10	M12
with HIT-SC			16x85	18x85	22x85
Nominal diameter of drill bit	d ₀	[mm]	16	18	22
Drill hole depth	h ₀	[mm]	95	95	95
Effective embedment depth	h _{ef}	[mm]	80	80	80
Thread engagement length	hs	[mm]	875	1075	1275
Maximum diameter of clearance hole in the fixture	d _f	[mm]	9	12	14
Minimum wall thickness	h _{min}	[mm]	115	115	115
Brush HIT-RB			16	18	22
Number of strokes HDM			6	8	10
Number of strokes HDE-500			5	6	8
Maximum torque moment	T _{max}	[Nm]	3	4	6

Solid bricks without sieve sleeves ^{a)}

Installation parameters of HIT-V, HAS-U in solid bricks

Threaded rods and HIT-V, HAS-U	ROOMOON	nf]n	M8	M10	M12
Nominal diameter of drill bit	d_0	[mm]	10	12	14
Drill hole depth = Effective embedment depth	h ₀ = h _{ef}	[mm]	50300	50300	50300
Maximum diameter of clearance hole in the fixture	df	[mm]	9	12	14
Minimum wall thickness	h _{min}	[mm]	h ₀ +30	h₀+30	h₀+30
Brush HIT-RB			10	12	14
Maximum torque moment	T _{max}	[Nm]	5	8	10

a) Hilti recommends the anchoring in masonry always with sieve sleeve. Anchors can only be installed without sieve sleeves in solid bricks when it is guaranteed that it has not any hole or void.

Installation parameters of HIT-IC in solid bricks

HIT-IC			M8x80	M10x80	M12x80
Nominal diameter of drill bit	d ₀	[mm]	14	16	18
Drill hole depth = Effective embedment depth	h₀= h _{ef}	[mm]	80	80	80
Thread engagement length	h₅	[mm]	875	1075	1275
Maximum diameter of clearance hole in the fixture	df	[mm]	9	12	14
Minimum wall thickness	h _{min}	[mm]	115	115	115
Brush HIT-RB			14	16	18
Maximum torque moment	T _{max}	[Nm]	5	8	10

a) Hilti recommends the anchoring in masonry always with sieve sleeve. Anchors can only be installed without sieve sleeves in solid bricks when it is guaranteed that it has not any hole or void.

Installation equipment

Anchor size	M8	M10	M12		
Rotary hammer	TE2(A) – TE30(A)				
Other tools	compressed air gun or blow out pump, set of cleaning brushes, dispenser				

Drilling and cleaning parameters

				Drilling an	d cleaning
HAS-U, HIT-V ^{a)}	HAS-U, HIT-V + sieve sleeve	HIT-IC ^{a)}	HIT-IC + sieve sleeve	Hammer drill	Brush HIT-RB
				d₀ [mm]	size [mm]
mannanna				TU	*****
			N		
M8	-	-	-	10	10
M10	-	-	-	12	12
M12	-	M8	-	14	14
-	M8	-	-	16	16
-	M10	M10	M8	16	16
-	M12	M12	M10	18	18
-	-	-	M12	22	22

a) Installation without the sieve sleeve HIT-SC can be used only in case of solid bricks.

Setting instructions

*For detailed information on installation see instruction for use given with the package of the product.

Safety regulations.

Review the Material Safety Data Sheet (MSDS) before use for proper and safe handling! Wear well-fitting protective goggles and protective gloves when working with Hilti HIT-HY 170.

Drilling

In solid bricks: hammer mode

Cleaning

Instructions for solid bricks without sieve sleeve Injection system

Injection system preparation.

Injection method for drill hole

Setting the element

