

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-17/0200 of 10 October 2024

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	Hilti bonded anchor HVZ dynamic
Product family to which the construction product belongs	Post-installed fasteners in concrete under fatigue cyclic loading
Manufacturer	HILTI Corporation Feldkircherstraße 100 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN
Manufacturing plant	Hilti Plants
This European Technical Assessment contains	15 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330250-01-0601, Edition 10/2023
This version replaces	ETA-17/0200 issued on 5 October 2020

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Specific Part

1 Technical description of the product

The Hilti bonded anchor HVZ dynamic is a torque controlled bonded anchor which is anchored into a drilled hole in the concrete. The anchor consists of an anchor rod HAS-(HCR)-TZ, a dynamic-set (nut, sealing washer, spherical washer and nut lock), a foil capsule with mortar Hilti HVU-TZ and the Hilti injection mortar HIT-HY 200-A (V3) or HIT-HY 200-R (V3).

The special formed anchor rod is driven into the foil capsule by machine with simultaneous hammering and turning. The load transfer is realized by mechanical interlock of several cones in the bonding mortar and then via a combination of bonding and friction forces in the concrete. The annular gap between anchor rod and fixture must be filled up with injection mortar HIT-HY 200-A (V3) or HIT-HY 200-R (V3).

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic (Assessment method B: Fatigue limit resistance)	Performance
Characteristic fatigue resistance under cyclic tension loading	
Characteristic steel fatigue resistance $N_{Rk,s,0,\infty}$	- See Annex C1
Characteristic pull-out, concrete cone and splitting fatigue resistance $\Delta N_{Rk,p,0,\infty}$ $N_{Rk,c,0,\infty}$ $\Delta N_{Rk,sp,0,\infty}$	- See Annex CT
Characteristic fatigue resistance under cyclic shear loading	
Characteristic steel fatigue resistance $\Delta V_{Rk,s,0,\infty}$	0
Characteristic concrete edge and concrete pry out fatigue resistance $\Delta V_{Rk,c,0,\infty} \Delta V_{Rk,cp,0,\infty}$	See Annex C2
Characteristic fatigue resistance under cyclic combined tension and shear load	ling
Characteristic steel fatigue resistance a_s	See Annex C2

Essential characteristic (Assessment method B: Fatigue limit resistance)	Performance
Load transfer factor for cyclic tension and shear loading	
Load transfer factor	See Annexes
ψ_{FN},ψ_{FV}	C1 and C2

Assessment and verification of constancy of performance (AVCP) system applied, with 4 reference to its legal base

In accordance with the European Assessment Document EAD 330250-01-0601 the applicable European legal act is: 1996/582/EC.

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

The following standards and documents are referred to in this European Technical Assessment:

-	EN 1993-1-4:2006 + A1:2015	Eurocode 3: Design of steel structures - Part 1-4: General rules - Supplementary rules for stainless steels
-	EN 10088-1:2014	Stainless steels - Part 1: List of stainless steels
-	EN 206:2013 + A2:2021	Concrete - Specification, performance, production and conformity
-	EN 1992-4:2018	Eurocode 2: Design of concrete structures - Part 4: Design of fastenings for use in concrete
-	EOTA TR 061	Design Method for fasteners in concrete under fatigue cyclic loading, August 2023
-	ETA-03/0032	European Technical Assessment for Hilti bonded anchor HVZ / HVZ R / HVZ HCR, 10 October 2024

Issued in Berlin 10 October 2024 by Deutsches Institut für Bautechnik

Beatrix Wittstock Head of Section

beglaubigt: Stiller

Hilti Filling Set to fill the annular gap bet	ween steel element a		Cilling and
Sealing washer		Spherical washer	Filling set
			h _{fs}
Size	M10	M12	M16
Diameter of sealing washer d_{vs} [mm]	42	44	52
Thickness of sealing washer h _{vs} [mm]		5	6
Thickness of Hilti Filling set h _{fs} [mm]	9	10	11

Table A1: Materials

Designation	Material
Steel elements m	nade of zinc coated steel
Anchor rod HAS-TZ	f_{uk} = 800 N/mm ² ; f_{yk} = 640 N/mm ² Coated, elongation at fracture (I ₀ =5d) > 8% ductile
Washer	Electroplated zinc coated $\ge 5 \ \mu m$
Nut	Electroplated zinc coated $\ge 5 \ \mu m$
Hilti Filling Set	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	nade of stainless steel and high corrosion resistant steel nee class III acc. to EN 1993-1-4
Anchor rod HAS-HCR-TZ	f_{uk} = 800 N/mm ² ; f_{yk} = 640 N/mm ² Stainless steel 1.4529, elongation at fracture (I_0 =5d) > 8% ductile
Washer	High corrosion resistant steel 1.4529, 1.4565 EN 10088-1
Nut	Strength class 80 High corrosion resistant steel 1.4529, 1.4565 EN 10088-1
Hilti Filling Set	Sealing washer: Stainless steel according to EN 10088-1 Spherical washer: Stainless steel according to EN 10088-1 Lock nut: Stainless steel according to EN 10088-1

Hilti bonded anchor HVZ dynamic

Product description
Hilti Filling Set
Materials

Annex A3

Specifications of intended use

Anchorages subject to:

• Fatigue cycling load. Note: static and quasi-static load according to ETA-03/0032.

Base material:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206.
- Strength classes C20/25 to C50/60 according to EN 206.
- Cracked and uncracked concrete.

Temperature in the base material:

- at installation
- 0 °C to +40 °C
- in-service

Temperature range: -40 °C to +80 °C

(max. long term temperature +50 °C and max. short term temperature +80 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all conditions according EN 1993-1-4 corresponding to corrosion resistance class III given in Table A1 (stainless steel).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to reinforcement or to supports, etc.).
- Anchorages under fatigue cycling load are designed in accordance with: EN 1992-4 and EOTA Technical Report TR 061.

Installation:

- Concrete condition I1: Installation in dry or wet (water saturated) concrete (not in flooded holes) and use in service in dry and wet concrete for all drilling techniques.
- Drilling techniques:
 - Hammer drilling,
 - Hammer drilling with hollow drill bit TE-CD, TE-YD.
- Installation direction D3: Downward, horizontal and upwards (e.g. overhead) installation.
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Hilti bonded anchor HVZ dynamic

Intended use Specifications Annex B1

HAS-TZ				M10x75	M12x95	M16x105	M16x125
HAS-HCR-1	۲ Ζ			-	M12x95	-	M16x125
Nominal dia	meter of fastener	d	[mm]	10	12	1	6
Nominal dia	meter of drill bit	d ₀	[mm]	12	14	1	8
Max. cutting	diameter of drill bit	d _{cut}	[mm]	12,5	14,5	18	3,5
Nominal dril	I hole depth	h ₀	[mm]	90	110	125	145
Effective en	nbedment depth	h _{ef}	[mm]	75	95	105	125
Minimum th member	ickness of concrete	h _{min}	[mm]	150	190	160 190	
Max. diame in the fixture	ter of clearance hole	d _f	[mm]	14	16	20	
Fixture thick	ness	t _{fix} 1)	[mm]	6 / 21 / 41	15 / 30 90	19 / 49 / 89	
Installation	HAS-TZ	T _{inst}	[Nm]	40	50	90	
torque HAS-HCR-TZ		T _{inst}	[Nm]	50	70	100	
Minimum spacing		S _{min,ucr}	[mm]	50	60	70	
Uncracked concrete	Minimum edge distance	C _{min,ucr}	[mm]	50	70	85	
Orealiad	Minimum spacing	S _{min,cr}	[mm]	50	60	70	
Cracked concrete	Minimum edge distance	C _{min,cr}	[mm]	50	60	70	

 $^{\mbox{\tiny 1)}}$ Other fixture thicknesses are possible.

Hilti bonded anchor HVZ dynamic

Intended use Installation parameters Annex B2

Table B2:	Curing time of mortar capsule HVU-TZ ¹⁾
-----------	--

Temperature in the base material T	Curing time: full load t _{cure}
0 °C to 9 °C	1 hour
10 °C to 19 °C	30 min
20 °C to 40 °C	20 min

¹⁾ The curing time data are valid for dry base material only. In wet base material the curing times must be doubled.

Table B3: Parameters of drilling and setting tool

Fastener	Drill		Setting tool
	Hamme	er drilling	
HAS-(HCR)-TZ		Hollow drill bit TE-CD, TE-YD	
	(€ — ∎	
Size	d ₀ [mm]	d₀[mm]	
M10	12	-	TE-C HEX M10
M12	14	14	TE-C HEX M12
M16	18	18	TE-C HEX M16

Table B4: Cleaning alternatives

Installation instruc	tion	
Hole drilling		
	<u>Pre-setting</u> : Mark drill hole depth h_0 on drill bit TE-C, TE-Y, TE-CD or TE-YD of the drilling machine to drill hole depth h_0 .	or set the depth gauge
	<u>Pre-setting:</u> Drill hole to the required drilling depth with a hammer drill set in ro using an appropriately sized carbide drill bit. Do not drill deeper.	tation-hammer mode
$h_0 + t_{fix}$	$\label{eq:holdsymbolic} \frac{Through-setting:}{Mark setting depth h_0 + t_{fix} on element.} \\ Mark drill hole depth h_0 + t_{fix} on drill bit TE-C, TE-Y, TE-CD or TE-gauge of the drilling machine to drill hole depth h_0 + t_{fix}.} \\ \end{tabular}$	YD or set the depth
	<u>Through-setting:</u> Drill hole to the required drilling depth with a hammer drill set in ro using an appropriately sized carbide drill bit. Do not drill deeper.	tation-hammer mode
TE-CD TE-YD	<u>Pre- / Through-setting:</u> Drill hole to the required embedment depth with an appropriately s TE-YD hollow drill bit with Hilti vacuum attachment. This drilling removes dust while drilling. After drilling is complete, p setting depth" step in the instructions for use.	
Drill hole cleaning	Pre- and through-setting: Just before setting the fastener, the drill dust and debris.	hole must be free of
	The Hilti hand pump may be used for blowing out drill holes. Blow out at least 4 times from the back of the drill hole until return noticeable dust.	air stream is free of
ilti bonded anchor H	VZ dynamic	
tended use stallation instructions		Annex B4

Page 12 of European Technical Assessment ETA-17/0200 of 10 October 2024

English translation prepared by DIBt

٦

Check setting depth (P	Pre- and through-setting)	
	Check the setting depth with the marked element. The element has to fit in the hole until the required embedment de until the fixture surface. If it is not possible to insert the element to the required embedme	
Setting the element (Pr	re- and through-setting)	
	Push the anchor foil capsule with the peak ahead to the back of th	he hole.
250 1000 RPM	Drive the anchor rod with the setting tool (see Table B3) into the h moderate pressure and with the hammering action switched on (2 1000 RPM). After reaching the embedment depth switch off setting machine.	
	After required curing time t_{cure} (see Table B2) remove excess mor	rtar.
Hilti bonded anchor H\	/Z dynamic	
Intended use Installation instructions		Annex B5

Page 13 of European Technical Assessment ETA-17/0200 of 10 October 2024

English translation prepared by DIBt

Final assembly with Filling Set (Pre- and through-setting)							
The required installation to	orque is given in Table B1.						
1/4 1/2 Apply the lock nut and tighten with a 1/4 to 1/2 turn.							
	Fill the annular gap between anchor rod and fixture with 1-3 strokes of a Hilti injection mortar HIT-HY 200 A (V3) or HIT-HY 200 R (V3) . Follow the installation instructions supplied with the respective Hilti injection mortar. After the required curing time t_{cure} , the fastener can be loaded.						

Hilti bonded anchor HVZ dynamic

Intended use Installation instructions Annex B6

Table C1: Essential characteristics under tension fatigue load in concrete (design method II acc. to TR 061)

HAS			TZ				HCR-TZ		
Size			M10x75	M12x95	M16x105	M16x125	M12x95	M16x125	
Steel failure									
Characteristic resistance	$\Delta N_{Rk,s,0,\infty}$	[kN]	10,0	18,0	20,0	26,0	15,0	20,8	
Partial factor	γ̃Ms,N,fat	[-]	1,35						
Load transfer factor for fastener group	Ψfn	[-]	0,69						
Concrete failure									
Characteristic concrete c	one resistan	се		ΔN	$I_{Rk,c,0,\infty} = \eta_{k,j}$	$_{c,N,fat,\infty}\cdotN_{Rk}$,,c ¹⁾		
Reduction factor	$\eta_{k,c,N,\text{fat},\infty}$	[-]	0,6						
Partial factor	γMc,fat	[-]	1,5						
Characteristic splitting	resistance			ΔN_{R}	$\eta_{k,sp,0,\infty} = \eta_{k,sp,0,\infty}$	$_{sp,N,fat,\infty}\cdotN_R$	k,sp ¹⁾		
Reduction factor	η _{k,sp,N,fat,∞}	[-]	0,6						
Pull-out failure				ΔN	$I_{Rk,p,0,\infty} = \eta_{k,k}$	$_{p,N,fat,\infty}\cdotN_{Rk}$	2) (,p ²)		
Partial factor	ŶMp,N,fat	[-]	1,5						
Reduction factor	$\eta_{k,p,N,\text{fat},\infty}$	[-]	0,6						
Load transfer factor for fastener group	Ψfn	[-]	0,69						

 $^{1)}$ $N_{Rk,c}$ and $N_{Rk,sp}$ according to EN 1992-4 and ETA-03/0032.

²⁾ $N_{Rk,p}$ according to ETA-03/0032

Hilti bonded anchor HVZ dynamic

Performance

Essential characteristics under tension fatigue load in concrete (design method II acc. to TR 061)

Annex C1

Table C2: Essential characteristics under shear fatigue load in concrete (design method II acc. to TR 061)

HAS Size			TZ				HCR-TZ	
			M12x95	M16x105	M16x125	M12x95	M16x125	
				1			1	
$\Delta V_{Rk,s,0,\infty}$	[kN]	4,5	8,5	15,0	15,0	8,5	7,6	
γ̃Ms,V,fat	[-]	1,35						
ψ_{FV}	[-]	0,77						
γ̃Mc,fat	[-]	1,5						
ge failure			Δ٧	$V_{\text{Rk,c,0,\infty}} = \eta_{\text{k,c}}$	$_{c,V,fat,\infty}\cdotV_{Rk}$,c 1)		
$\eta_{k,c,V,\text{fat},\infty}$	[-]	0,6						
stance			ΔV_{F}	$\eta_{k,cp,0,\infty} = \eta_{k,c}$	$_{cp,V,fat,\infty}\cdotV_{R}$	(,cp ¹⁾		
$\eta_{k,cp,V,fat,\infty}$	[-]	0,6						
	Ψ_{FV} $\gamma_{Mc,fat}$ ge failure $\eta_{k,c,V,fat,\infty}$ stance	$\gamma_{Ms,V,fat}$ [-] ψ_{FV} [-] $\gamma_{Mc,fat}$ [-] ge failure η _{k,c,V,fat,∞} η _{k,c,V,fat,∞} [-] stance [-]	γMs,V,fat [-] ΨFV [-] γMc,fat [-] ge failure	$\begin{array}{c c c c c c c c c c } \hline M10x75 & M12x95 \\ \hline & & & & & & \\ \hline & & & & & \\ \hline & & & &$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

Table C3:Essential characteristics under combined fatigue load in concrete
(design method II acc. to TR 061)

HAS			TZ				HCR-TZ	
Size			M10x75	M12x95	M16x105	M16x125	M12x95	M16x125
Steel failure		·						
Exponent for combined fatigue load	α_{s}	[-]	0,75	0,85	0,7	0,7	0,5	0,7
Concrete failure								
Exponent for combined fatigue load	α_{c}	[-]			1,	,5		

Hilti bonded anchor HVZ dynamic	
Performance Essential characteristics under shear and combined fatigue load in concrete (design method II acc. to TR 061)	Annex C2